历史学家们曾争论过这场决斗是一个悲惨的爱情事件的结局,还是出于政治动机造成的,但无论是哪一种,一位世界上最杰出的数学家在他21岁时被杀死了,而他开始研究数学才仅仅只有五年(伽罗瓦1828年开始研究代数方程理论时,甚至还完全不了解阿贝尔已做的工作)。
伽罗瓦死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了十四年后,也就是1846年,才由法国数学家刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义。刘维尔最后将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上,并向数学界推荐。1870年法国数学家约当根据伽罗瓦的思想,撰写了《论置换与代数方程》一书,他在这本书使里伽罗瓦的思想得到了进一步的阐述。
伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗瓦理论。正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程。正是这套理论为数学研究工作提供了新的数学工具群论。它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始。
伽罗瓦“把数学运算归类”的群论思想,犹如一颗最耀眼的恒星,从此照亮了人类数学界的天空。
伽罗瓦非常彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题。这是伽罗瓦工作中的第一个“突破”,他犹如划破黑夜长空的一颗瞬间即逝的流星,开创了置换群论的研究,确立了代数方程的可解性理论,即后来称为的“伽罗瓦理论”,从而彻底解决了一般方程的根式解难题。
作为这个理论的推论,它系统化地阐释了为何五次以上之方程式没有公式解,而四次以下有公式解;它漂亮地证明高斯的论断:若用尺规作图能作出正p边形,p为质费马数(所以正十七边形可做图);以及完美证明了古代三大作图问题中的两个:用圆规、直尺(无刻度的尺)三等分任意角和作倍立方体不可能。
另外,怀尔斯在复证费马大定理的时候,亦使用到伽罗瓦理论。
伽罗瓦理论的建立,不仅完成了由拉格朗日、鲁菲尼、阿贝尔等人开始的研究,而且为开辟抽象代数学的道路建立了不朽的业绩。
对伽罗瓦来说,他所提出并为之坚持的理论是一场对权威、对时代的挑战,他的“群”完全超越了当时数学界能理解的观念。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界,而也正因如此,他才受到了不公正的冷遇。
而伽罗瓦除了自己毫无意义的死亡之外,还因为其对数学的敏感,留下了一段用圆周率破案的千古传奇。
有一天,伽罗瓦得到了一个伤心的消息,他的一位老朋友鲁柏被人刺死了,家里的钱财被洗劫一空。而女看门人告诉伽罗瓦,警察在勘察现场的时候,看见鲁柏手里紧紧捏着半块没有吃完的苹果馅饼。女看门人认为,凶手一定就在这幢公寓里,因为出事前后,她一直在值班室,没有看见有人进出公寓。可是这座公寓共有四层楼,每层楼有15个房间,共居住着一百多人,这里面到底谁会是凶手呢?
伽罗瓦把女看门人提供的情况前前后后分析了一番:鲁柏手里捏着半块馅饼,是不是想表达什么意思呢?伽罗瓦忽然想到:馅饼,英文里的读音是“派”,而"派"正好和表示圆周率的读音相同。而鲁柏生前酷爱数学,伽罗瓦知道,他经常把圆周率的近似值取成3.14来做计算。“派”3.14,鲁柏会不会是用这种方法来提示人杀害他的凶手的房间号正是314呢?
为了证实自己的怀疑,伽罗瓦问女看门人:“314号房间住的是谁?”
“是米赛尔。”女看门人答道。
“这个人怎样?”伽罗瓦追问到。
“不怎样,又爱喝酒,又爱赌钱。”
“他现在还在房间吗?”伽罗瓦追问得更急切了。
“不在了,他昨天就搬走了。”
“搬走了?”伽罗瓦一呆,“不好,他跑了!”
“你怀疑是他干的吗?”女看门人问。
“嗯,如果我没有猜错的话,他一定就是杀害鲁柏的凶手!”
伽罗瓦向女看门人讲述了自己的推理过程,他们立刻把这些情况报告了警察要求缉捕米赛尔。米赛尔很快被捉拿归案,经过审讯,他果然招认了他因见财起意杀害鲁柏的全过程。就是这半块馅饼,让鲁柏在被害之际还提供了凶手的线索,并被伽罗瓦注意到,从而抓到了真凶。
了解到这些历史的传奇,言羽感受到了一种深深的孤独与悲哀,一种来自人类最高智慧的孤独与悲哀。但是,历史的曲折并不能埋没真理的光辉,由伽罗瓦开始的群论,不仅对近代数学的各个方向,而且对物理学、化学的许多分支都产生了重大的影响。
罗瓦理论被扩充并推广到很多方向。戴德金曾把伽罗瓦的结果解释为关于域的自同构群的对偶
喜欢英雄无敌魔法门之众星传说请大家收藏:(m.iuu123.com),爱优小说网更新速度最快。