大量的碳原子以六边形的形状,排列形成一,这网的整体形状如菱形,菱角却又带有弧度。
网与网之间纵向错位1.05°的堆叠,沿着垂直方向拉出一条长长的圆柱,整齐的如同一件艺术品。
“胡哥,怎么看这中间没有碳纳米管去掉的圆孔,你们这是改良了实验思路?”
陆毅看了一会儿,指着模拟图像上中间不见圆孔的石墨烯带,有些好奇的询问。
按照开始的实验思路,需要在超导石墨烯生成后,再去掉中间的碳纳米管,这样必定会在中间留下痕迹,但现在什么痕迹都没有。
“是换了实验思路,开始采用的是化学置换溶解和机械剥离的方法。
不过经过实际操作,发现这两种办法都不行。
机械剥离需要在石墨烯刚刚生成固定的瞬间进行剥离,否则中心的碳纳米管就会和石墨烯带相互粘连在一起。
这对时间要求很严格,另外碳纳米管直径太小,操作精度要求也很严格,所以这种办法被淘汰了。
化学置换的方法,因为石墨烯带和碳纳米管都属于碳材料,能置换溶解碳纳米管的化合物也能对生成的石墨烯带造成影响。
经过试验后,这种方法能制备的超导石墨烯导线长度很短,需要多条驳接才能达到宏观需求。
并且因为是置换溶解也会对石墨烯造成影响,导致制备出来的导线很难控制品质,严重的甚至会产生石墨烯层断层从而失去超导性质。
两种办法失败后,经过多次试验研究,最终采用的是把两根碳纳米管生长线并列,却又互相正负调整弯曲弧度。
这一个弯曲弧度刚好能使生长在上面的石墨烯层倾斜0.52°,两根碳纳米管生长线的弧度互相正负,最终才有化学气相沉淀法在两根碳纳米管上定向生长石墨烯层。
初期石墨烯层结构形态未彻底固定之前,缓缓把两根碳纳米管的距离拉开,让石墨烯层沿着拉开的方向继续生长,最终中间重叠部位就能实现1.05°错位重叠的超导石墨烯。
用这一个方法,一开始距离拉开会让石墨烯层生长歪斜,我们试验了12天才找到能够拉生长出数千纳米宽度的石墨烯带,从而完成超导石墨烯导线的制取。
现在老板你看到的是结构稳定后,把非重叠结合部分切割截取后留下的超导石墨烯导线。”
陆毅点点头,问道:“成本呢?成本是多少,改良了制备工艺,那能不能应用到工业大规模制备上面?”
明白了这根超导石墨烯导线的诞生过程,陆毅问题另两个至关重要的问题。
成本,还有能不能工业化批量制备。
喜欢文明科学系统请大家收藏:(m.iuu123.com),爱优小说网更新速度最快。